
Building a Blog System using Yii

Qiang Xue

Copyright 2008-2013. All Rights Reserved.

Contents

Contents i

License v

1 Getting Started 1

1.1 Building a Blog System using Yii . 1

1.2 Testdriving with Yii . 1

1.2.1 Installing Yii . 1

1.2.2 Creating Skeleton Application . 2

1.2.3 Application Workflow . 3

1.3 Requirements Analysis . 4

1.4 Overall Design . 5

2 Initial Prototyping 9

2.1 Setting Up Database . 9

2.1.1 Creating Database . 9

2.1.2 Establishing Database Connection 9

2.2 Scaffolding . 11

2.2.1 Installing Gii . 11

2.2.2 Creating Models . 12

2.2.3 Implementing CRUD Operations . 13

2.2.4 Testing . 14

ii Contents

2.3 Authenticating User . 15

2.4 Summary . 19

3 Post Management 21

3.1 Customizing Post Model . 21

3.1.1 Customizing rules() Method . 21

3.1.2 Customizing relations() Method 23

3.1.3 Adding url Property . 24

3.1.4 Representing Status in Text . 25

3.2 Creating and Updating Posts . 26

3.2.1 Customizing Access Control . 26

3.2.2 Customizing create and update Operations 27

3.3 Managing Posts . 28

3.3.1 Listing Posts in Tabular View . 29

3.3.2 Deleting Posts . 30

4 Comment Management 33

4.1 Customizing Comment Model . 33

4.1.1 Customizing rules() Method . 33

4.1.2 Customizing attributeLabels() Method 33

4.1.3 Customizing Saving Process . 34

4.2 Creating and Displaying Comments . 34

4.2.1 Displaying Comments . 35

4.2.2 Creating Comments . 35

4.2.3 Ajax-based Validation . 37

Contents iii

4.3 Managing Comments . 38

4.3.1 Updating and Deleting Comments 38

4.3.2 Approving Comments . 38

5 Portlets 41

5.1 Creating User Menu Portlet . 41

5.1.1 Creating UserMenu Class . 41

5.1.2 Creating userMenu View . 42

5.1.3 Using UserMenu Portlet . 43

5.1.4 Testing UserMenu Portlet . 43

5.1.5 Summary . 43

5.2 Creating Tag Cloud Portlet . 43

5.2.1 Creating TagCloud Class . 44

5.2.2 Using TagCloud Portlet . 44

5.3 Creating Recent Comments Portlet . 45

5.3.1 Creating RecentComments Class . 45

5.3.2 Creating recentComments View . 46

5.3.3 Using RecentComments Portlet . 46

6 Final Work 47

6.1 Beautifying URLs . 47

6.2 Logging Errors . 48

6.3 Final Tune-up and Deployment . 49

6.3.1 Changing Home Page . 49

6.3.2 Enabling Schema Caching . 49

iv Contents

6.3.3 Disabling Debugging Mode . 50

6.3.4 Deploying the Application . 50

6.4 Future Enhancements . 51

6.4.1 Using a Theme . 51

6.4.2 Internationalization . 51

6.4.3 Improving Performance with Cache 51

6.4.4 Adding New Features . 52

License of Yii

The Yii framework is free software. It is released under the terms of the following BSD

License.

Copyright c©2008-2010 by Yii Software LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3. Neither the name of Yii Software LLC nor the names of its contributors may be

used to endorse or promote products derived from this software without specific

prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-

TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-

STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-

TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

vi Contents

Chapter 1

Getting Started

1.1 Building a Blog System using Yii

This tutorial describes how to use Yii to develop a blog application shown as which can

be found in the Yii release files. It explains in detail every step to be taken during the

development, which may also be applied in developing other Web applications. As a

complement to and of Yii, this tutorial aims to show practical usage of Yii instead of

thorough and definitive description.

Readers of this tutorial are not required to have prior knowledge about Yii. However, basic

knowledge of object-oriented programming (OOP) and database programming would help

readers to understand the tutorial more easily.

Note: This tutorial isn’t a complete step by step guide. You will have to fix errors

popping up, check API and read the definitive guide while following it.

This tutorial is released under .

1.2 Testdriving with Yii

In this section, we describe how to create a skeleton application that will serve as our

starting point. For simplicity, we assume that the document root of our Web server is

/wwwroot and the corresponding URL is http://www.example.com/.

1.2.1 Installing Yii

We first install the Yii framework. Grab a copy of the Yii release file (version 1.1.1 or

above) from and unpack it to the directory /wwwroot/yii. Double check to make sure that

there is a directory /wwwroot/yii/framework.

2 1. Getting Started

Tip: The Yii framework can be installed anywhere in the file system, not necessarily

under a Web folder. Its framework directory contains all framework code and is

the only framework directory needed when deploying an Yii application. A single

installation of Yii can be used by multiple Yii applications.

After installing Yii, open a browser window and access the URL http://www.example.

com/yii/requirements/index.php. It shows the requirement checker provided in the Yii

release. For our blog application, besides the minimal requirements needed by Yii, we also

need to enable both the pdo and pdo sqlite PHP extensions so that we can access SQLite

databases.

1.2.2 Creating Skeleton Application

We then use the yiic tool to create a skeleton application under the directory /wwwroot/

blog. The yiic tool is a command line tool provided in the Yii release. It can be used to

generate code to reduce certain repetitive coding tasks.

Open a command window and execute the following command:

% /wwwroot/yii/framework/yiic webapp /wwwroot/blog

Create a Web application under '/wwwroot/blog'? [Yes|No]y

......

Tip: In order to use the yiic tool as shown above, the CLI PHP program must be

on the command search path. If not, the following command may be used instead:

path/to/php /wwwroot/yii/framework/yiic.php webapp /wwwroot/blog

To try out the application we just created, open a Web browser and navigate to the URL

http://www.example.com/blog/index.php. We should see that our skeleton application

already has four fully functional pages: the homepage, the about page, the contact page

and the login page.

In the following, we briefly describe what we have in this skeleton application.

Entry Script

We have an file /wwwroot/blog/index.php which has the following content:

1.2 Testdriving with Yii 3

<?php

$yii=’/wwwroot/framework/yii.php’;

$config=dirname(FILE).’/protected/config/main.php’;

// remove the following line when in production mode

defined(’YII DEBUG’) or define(’YII DEBUG’,true);

require once($yii);

Yii::createWebApplication($config)->run();

This is the only script that Web users can directly access. The script first includes the Yii

bootstrap file yii.php. It then creates an instance with the specified configuration and

executes the application.

Base Application Directory

We also have an /wwwroot/blog/protected. The majority of our code and data will be

placed under this directory, and it should be protected from being accessed by Web users.

For , we place under this directory a .htaccess file with the following content:

deny from all

For other Web servers, please refer to the corresponding manual on how to protect a

directory from being accessed by Web users.

1.2.3 Application Workflow

To help understand how Yii works, we describe the main workflow in our skeleton appli-

cation when a user is accessing its contact page:

1. The user requests the URL http://www.example.com/blog/index.php?r=site/contact;

2. The is executed by the Web server to process the request;

3. An instance is created and configured with initial property values specified in the

application configuration file /wwwroot/blog/protected/config/main.php;

4. The application resolves the request into a and a . For the contact page request, it

is resolved as the site controller and the contact action (the actionContact method

in /wwwroot/blog/protected/controllers/SiteController.php);

4 1. Getting Started

5. The application creates the site controller in terms of a SiteController instance

and then executes it;

6. The SiteController instance executes the contact action by calling its actionContact()

method;

7. The actionContact method renders a named contact to the Web user. Internally, this

is achieved by including the view file /wwwroot/blog/protected/views/site/contact.

php and embedding the result into the file /wwwroot/blog/protected/views/layouts/

column1.php.

1.3 Requirements Analysis

The blog system that we are going to develop is a single user system. The owner of the

system will be able to perform the following actions:

• Login and logout

• Create, update and delete posts

• Publish, unpublish and archive posts

• Approve and delete comments

All other users are guest users who can perform the following actions:

• Read posts

• Create comments

Additional Requirements for this system include:

• The homepage of the system should display a list of the most recent posts.

• If a page contains more than 10 posts, they should be displayed in pages.

• The system should display a post together with its comments.

• The system should be able to list posts with a specified tag.

• The system should show a cloud of tags indicating their use frequencies.

• The system should show a list of most recent comments.

• The system should be themeable.

• The system should use SEO-friendly URLs.

1.4 Overall Design 5

1.4 Overall Design

Based on the analysis of the requirements, we decide to use the following database tables

to store the persistent data for our blog application:

• tbl user stores the user information, including username and password.

• tbl post stores the blog post information. It mainly consists of the following columns:

– title: required, title of the post;

– content: required, body content of the post which uses the ;

– status: required, status of the post, which can be one of following values:

∗ 1, meaning the post is in draft and is not visible to public;

∗ 2, meaning the post is published to public;

∗ 3, meaning the post is outdated and is not visible in the post list (still

accessible individually, though).

– tags: optional, a list of comma-separated words categorizing the post.

• tbl comment stores the post comment information. Each comment is associated with

a post and mainly consists of the following columns:

– author: required, the author name;

– email: required, the author email;

– url: optional, the author website URL;

– content: required, the comment content in plain text format.

– status: required, status of the comment, which indicates whether the comment

is approved (value 2) or not (value 1).

• tbl tag stores post tag frequency information that is needed to implement the tag

cloud feature. The table mainly contains the following columns:

– name: required, the unique tag name;

– frequency: required, the number of times that the tag appears in posts.

• tbl lookup stores generic lookup information. It is essentially a map between integer

values and text strings. The former is the data representation in our code, while the

latter is the corresponding presentation to end users. For example, we use integer

1 to represent the draft post status and string Draft to display this status to end

users. This table mainly contains the following columns:

6 1. Getting Started

– name: the textual representation of the data item that is to be displayed to end

users;

– code: the integer representation of the data item;

– type: the type of the data item;

– position: the relative display order of the data item among other items of the

same type.

The following entity-relation (ER) diagram shows the table structure and relationships

about the above tables.

Figure 1.1: Entity-Relation Diagram of the Blog Database

Complete SQL statements corresponding to the above ER diagram may be found in . In

our Yii installation, they are in the file /wwwroot/yii/demos/blog/protected/data/schema.

sqlite.sql.

Info: We name all our table names and column names in lower case. This is because

different DBMS often have different case-sensitivity treatment and we want to avoid

troubles like this.

We also prefix all our tables with tbl . This serves for two purposes. First, the prefix

introduces a namespace to these tables in case when they need to coexist with other

tables in the same database, which often happens in a shared hosting environment

where a single database is being used by multiple applications. Second, using table

prefix reduces the possibility of having some table names that are reserved keywords

in DBMS.

1.4 Overall Design 7

We divide the development of our blog application into the following milestones.

• Milestone 1: creating a prototype of the blog system. It should consist of most of

the required functionalities.

• Milestone 2: completing post management. It includes creating, listing, showing,

updating and deleting posts.

• Milestone 3: completing comment management. It includes creating, listing, ap-

proving, updating and deleting post comments.

• Milestone 4: implementing portlets. It includes user menu, login, tag cloud and

recent comments portlets.

• Milestone 5: final tune-up and deployment.

8 1. Getting Started

Chapter 2

Initial Prototyping

2.1 Setting Up Database

Having created a skeleton application and finished the database design, in this section we

will create the blog database and establish the connection to it in the skeleton application.

2.1.1 Creating Database

We choose to create a SQLite database. Because the database support in Yii is built on

top of , we can easily switch to use a different type of DBMS (e.g. MySQL, PostgreSQL)

without the need to change our application code.

We create the database file blog.db under the directory /wwwroot/blog/protected/data.

Note that both the directory and the database file have to be writable by the Web server

process, as required by SQLite. We may simply copy the database file from the blog

demo in our Yii installation which is located at /wwwroot/yii/demos/blog/protected/data/

blog.db. We may also generate the database by executing the SQL statements in the file

/wwwroot/yii/demos/blog/protected/data/schema.sqlite.sql.

Tip: To execute SQL statements, we may use the sqlite3 command line tool that

can be found in .

2.1.2 Establishing Database Connection

To use the blog database in the skeleton application we created, we need to modify its which

is stored in the PHP script /wwwroot/blog/protected/config/main.php. The script returns

an associative array consisting of name-value pairs, each of which is used to initialize a

writable property of the .

We configure the db component as follows,

10 2. Initial Prototyping

return array(

......

’components’=>array(

......

’db’=>array(

’connectionString’=>’sqlite:/wwwroot/blog/protected/data/blog.db’,

’tablePrefix’=>’tbl ’,

),

),

......

);

The above configuration says that we have a db whose connectionString property should

be initialized as sqlite:/wwwroot/blog/protected/data/blog.db and whose tablePrefix

property should be tbl .

With this configuration, we can access the DB connection object using Yii::app()->db

at any place in our code. Note that Yii::app() returns the application instance that we

create in the entry script. If you are interested in possible methods and properties that

the DB connection has, you may refer to its class reference. However, in most cases we are

not going to use this DB connection directly. Instead, we will use the so-called to access

the database.

We would like to explain a bit more about the tablePrefix property that we set in the

configuration. This tells the db connection that it should respect the fact we are using

tbl as the prefix to our database table names. In particular, if in a SQL statement there

is a token enclosed within double curly brackets (e.g. {{post}}), then the db connection

should translate it into a name with the table prefix (e.g. tbl post) before sending it to

DBMS for execution. This feature is especially useful if in future we need to modify the

table name prefix without touching our source code. For example, if we are developing a

generic content management system (CMS), we may exploit this feature so that when it

is being installed in a new environment, we can allow users to choose a table prefix they

like.

https://www.yiiframework.com/doc/api/CDbConnection

2.2 Scaffolding 11

Tip: If you want to use MySQL instead of SQLite to store data, you may cre-

ate a MySQL database named blog using the SQL statements in /wwwroot/yii/

demos/blog/protected/data/schema.mysql.sql. Then, modify the application

configuration as follows,

return array(

......

’components’=>array(

......

’db’=>array(

’connectionString’ => ’mysql:host=localhost;dbname=blog’,

’emulatePrepare’ => true,

’username’ => ’root’,

’password’ => ’’,

’charset’ => ’utf8’,

’tablePrefix’ => ’tbl ’,

),

),

......

);

2.2 Scaffolding

Create, read, update and delete (CRUD) are the four basic operations of data objects in an

application. Because the task of implementing the CRUD operations is so common when

developing Web applications, Yii provides some code generation tools under the name of

Gii that can automate this process (also known as scaffolding) for us.

Note: Gii has been available since version 1.1.2. Before that, you would have to

use the to achieve the same task.

In the following, we will describe how to use this tool to implement CRUD operations for

posts and comments in our blog application.

2.2.1 Installing Gii

We first need to install Gii. Open the file /wwwroot/blog/protected/config/main.php and

add the following code:

return array(

......

’import’=>array(

12 2. Initial Prototyping

’application.models.*’,

’application.components.*’,

),

’modules’=>array(

’gii’=>array(

’class’=>’system.gii.GiiModule’,

’password’=>’pick up a password here’,

),

),

);

The above code installs the a module named gii, which enables us to access the Gii module

by visiting the following URL in browser:

http://www.example.com/blog/index.php?r=gii

We will be prompted to enter a password. Enter the password that we set in /wwwroot/

blog/protected/config/main.php previously, and we should see a page listing all available

code generation tools.

Note: The above code should be removed when running on the production machine.

Code generation tools should only be used on development machines.

2.2.2 Creating Models

We first need to create a class for each of our database tables. The model classes will

allow us to access the database in an intuitive object-oriented fashion, as we will see later

in this tutorial.

Click on the Model Generator link to start using the model generation tool.

On the Model Generator page, enter tbl user (the user table name) in the Table Name

field, tbl in the Table Prefix field and then press the Preview button. A preview table

will show up. We can click on the link in the table to preview the code to be generated.

If everything is ok, we can press the Generate button to generate the code and save it into

a file.

2.2 Scaffolding 13

Info: Because the code generator needs to save the generated code into files, it

is required that the Web process have the permission to create and modify the

corresponding files. For simplicity, we may give the Web process the write permission

to the whole /wwwroot/blog directory. Note that this is only needed on development

machines when using Gii.

Repeat the same procedure for the rest of the database tables, including tbl post, tbl

comment, tbl tag and tbl lookup.

Tip: We can also enter an asterisk character * in the Table Name field. This will

generate a model class for every database table in a single shot.

At this stage, we will have the following newly created files:

• models/User.php contains the User class that extends from CActiveRecord and can

be used to access the tbl user database table;

• models/Post.php contains the Post class that extends from CActiveRecord and can

be used to access the tbl post database table;

• models/Tag.php contains the Tag class that extends from CActiveRecord and can be

used to access the tbl tag database table;

• models/Comment.php contains the Comment class that extends from CActiveRecord

and can be used to access the tbl comment database table;

• models/Lookup.php contains the Lookup class that extends from CActiveRecord and

can be used to access the tbl lookup database table.

2.2.3 Implementing CRUD Operations

After the model classes are created, we can use the Crud Generator to generate the code

implementing the CRUD operations for these models. We will do this for the Post and

Comment models.

On the Crud Generator page, enter Post (the name of the post model class we just created)

in the Model Class field, and then press the Preview button. We will see a lot more files

will be generated. Press the Generate button to generate them.

Repeat the same procedure for the Comment model.

https://www.yiiframework.com/doc/api/CActiveRecord
https://www.yiiframework.com/doc/api/CActiveRecord
https://www.yiiframework.com/doc/api/CActiveRecord
https://www.yiiframework.com/doc/api/CActiveRecord
https://www.yiiframework.com/doc/api/CActiveRecord

14 2. Initial Prototyping

Let’s take a look at the files generated by the CRUD generator. All the files are generated

under /wwwroot/blog/protected. For convenience, we group them into files and files:

• controller files:

– controllers/PostController.php contains the PostController class which is the

controller in charge of all CRUD operations about posts;

– controllers/CommentController.php contains the CommentController class which

is the controller in charge of all CRUD operations about comments;

• view files:

– views/post/create.php is the view file that shows an HTML form to create a

new post;

– views/post/update.php is the view file that shows an HTML form to update an

existing post;

– views/post/view.php is the view file that displays the detailed information of a

post;

– views/post/index.php is the view file that displays a list of posts;

– views/post/admin.php is the view file that displays posts in a table with ad-

ministrative commands.

– views/post/ form.php is the partial view file embedded in views/post/create.

php and views/post/update.php. It displays the HTML form for collecting post

information.

– views/post/ view.php is the partial view file used by views/post/index.php. It

displays the brief view of a single post.

– views/post/ search.php is the partial view file used by views/post/admin.php.

It displays a search form.

– a similar set of view files are also generated for comment.

2.2.4 Testing

We can test the features implemented by the code we just generated by accessing the

following URLs:

http://www.example.com/blog/index.php?r=post

http://www.example.com/blog/index.php?r=comment

2.3 Authenticating User 15

Notice that the post and comment features implemented by the generated code are com-

pletely independent of each other. Also, when creating a new post or comment, we are

required to enter information, such as author id and create time, which in real applica-

tion should be set by the program. Don’t worry. We will fix these problems in the next

milestones. For now, we should be fairly satisfied as this prototype already contains most

features that we need to implement for the blog application.

In order to understand better how the above files are used, we show in the following the

workflow that occurs in the blog application when displaying a list of posts:

1. The user requests the URL http://www.example.com/blog/index.php?r=post;

2. The is executed by the Web server which creates and initializes an instance to handle

the request;

3. The application creates an instance of PostController and executes it;

4. The PostController instance executes the index action by calling its actionIndex()

method. Note that index is the default action if the user does not specify an action

to execute in the URL;

5. The actionIndex() method queries database to bring back the list of recent posts;

6. The actionIndex() method renders the index view with the post data.

2.3 Authenticating User

Our blog application needs to differentiate between the system owner and guest users.

Therefore, we need to implement the feature.

As you may have found that the skeleton application already provides user authentication

by checking if the username and password are both demo or admin. In this section, we

will modify the corresponding code so that the authentication is done against the User

database table.

User authentication is performed in a class implementing the [IUserIdentity] interface.

The skeleton application uses the UserIdentity class for this purpose. The class is stored

in the file /wwwroot/blog/protected/components/UserIdentity.php.

16 2. Initial Prototyping

Tip: By convention, the name of a class file must be the same as the corresponding

class name suffixed with the extension .php. Following this convention, one can

refer to a class using a . For example, we can refer to the UserIdentity class

with the alias application.components.UserIdentity. Many APIs in Yii can

recognize path aliases (e.g. Yii::createComponent()), and using path aliases avoids

the necessity of embedding absolute file paths in the code. The existence of the

latter often causes trouble when we deploy an application.

We modify the UserIdentity class as follows,

<?php

class UserIdentity extends CUserIdentity

{
private $ id;

public function authenticate()

{
$username=strtolower($this->username);

$user=User::model()->find(’LOWER(username)=?’,array($username));

if($user===null)

$this->errorCode=self::ERROR USERNAME INVALID;

else if(!$user->validatePassword($this->password))

$this->errorCode=self::ERROR PASSWORD INVALID;

else

{
$this-> id=$user->id;

$this->username=$user->username;

$this->errorCode=self::ERROR NONE;

}
return $this->errorCode==self::ERROR NONE;

}

public function getId()

{
return $this-> id;

}
}

In the authenticate() method, we use the User class to look for a row in the tbl user table

whose username column is the same as the given username in a case-insensitive manner.

Remember that the User class was created using the gii tool in the prior section. Because

the User class extends from CActiveRecord, we can exploit to access the tbl user table in

an OOP fashion.

https://www.yiiframework.com/doc/api/YiiBase#createComponent
https://www.yiiframework.com/doc/api/CActiveRecord

2.3 Authenticating User 17

In order to check if the user has entered a valid password, we invoke the validatePassword

method of the User class. We need to modify the file /wwwroot/blog/protected/models/

User.php as follows. Note that instead of storing the plain password in the database,

we store a hash of the password. When validating the user-entered password, we should

compare the hash results, instead. We use the Yii built-in CPasswordHelper to hash the

password and to validate it.

class User extends CActiveRecord

{
......

public function validatePassword($password)

{
return CPasswordHelper::verifyPassword($password,$this->password);

}

public function hashPassword($password)

{
return CPasswordHelper::hashPassword($password);

}
}

In the UserIdentity class, we also override the getId() method which returns the id value

of the user found in the tbl user table. The parent implementation would return the

username, instead. Both the username and id properties will be stored in the user session

and may be accessed via Yii::app()->user from anywhere in our code.

https://www.yiiframework.com/doc/api/CPasswordHelper

18 2. Initial Prototyping

Tip: In the UserIdentity class, we reference the class CUserIdentity without ex-

plicitly including the corresponding class file. This is because CUserIdentity is a

core class provided by the Yii framework. Yii will automatically include the class

file for any core class when it is referenced for the first time.

We also do the same with the User class. This is because the User class file is placed

under the directory /wwwroot/blog/protected/models which has been added to

the PHP include path according to the following lines found in the application

configuration:

return array(

......

’import’=>array(

’application.models.*’,

’application.components.*’,

),

......

);

The above configuration says that any class whose class file is located under either /

wwwroot/blog/protected/models or /wwwroot/blog/protected/components will

be automatically included when the class is referenced for the first time.

The UserIdentity class is mainly used by the LoginForm class to authenticate a user based

on the username and password input collected from the login page. The following code

fragment shows how UserIdentity is used:

$identity=new UserIdentity($username,$password);

$identity->authenticate();

switch($identity->errorCode)

{
case UserIdentity::ERROR NONE:

Yii::app()->user->login($identity);

break;

......

}

Info: People often get confused about identity and the user application component.

The former represents a way of performing authentication, while the latter is used

to represent the information related with the current user. An application can only

have one user component, but it can have one or several identity classes, depending

on what kind of authentication it supports. Once authenticated, an identity instance

may pass its state information to the user component so that they are globally

accessible via user.

https://www.yiiframework.com/doc/api/CUserIdentity
https://www.yiiframework.com/doc/api/CUserIdentity

2.4 Summary 19

To test the modified UserIdentity class, we can browse the URL http://www.example.com/

blog/index.php and try logging in with the username and password that we store in the

tbl user table. If we use the database provided by the , we should be able to login with

username demo and password demo. Note that this blog system does not provide the user

management feature. As a result, a user cannot change his account or create a new one

through the Web interface. The user management feature may be considered as a future

enhancement to the blog application.

2.4 Summary

We have completed the milestone 1. Let’s summarize what we have done so far:

1. We identified the requirements to be fulfilled;

2. We installed the Yii framework;

3. We created a skeleton application;

4. We designed and created the blog database;

5. We modified the application configuration by adding the database connection;

6. We generated the code that implements the basic CRUD operations for both posts

and comments;

7. We modified the authentication method to check against the tbl user table.

For a new project, most of the time will be spent in step 1 and 4 for this first milestone.

Although the code generated by the gii tool implements fully functional CRUD operations

for a database table, it often needs to be modified in practical applications. For this reason,

in the next two milestone, our job is to customize the generated CRUD code about posts

and comments so that it reaches our initial requirements.

In general, we first modify the class file by adding appropriate rules and declaring . We

then modify the and code for each individual CRUD operation.

20 2. Initial Prototyping

Chapter 3

Post Management

3.1 Customizing Post Model

The Post model class generated by the Gii tool mainly needs to be modified in two places:

• the rules() method: specifies the validation rules for the model attributes;

• the relations() method: specifies the related objects;

Info: A consists of a list of attributes, each associated with a column in the cor-

responding database table. Attributes can be declared explicitly as class member

variables or implicitly without any declaration.

3.1.1 Customizing rules() Method

We first specify the validation rules which ensure the attribute values entered by users

are correct before they are saved to the database. For example, the status attribute of

Post should be an integer 1, 2 or 3. The Gii tool also generates validation rules for each

model. However, these rules are based on the table column information and may not be

appropriate.

Based on the requirement analysis, we modify the rules() method as follows:

public function rules()

{
return array(

array(’title, content, status’, ’required’),

array(’title’, ’length’, ’max’=>128),

array(’status’, ’in’, ’range’=>array(1,2,3)),

array(’tags’, ’match’, ’pattern’=>’/^[\w\s,]+$/’,
’message’=>’Tags can only contain word characters.’),

22 3. Post Management

array(’tags’, ’normalizeTags’),

array(’title, status’, ’safe’, ’on’=>’search’),

);

}

In the above, we specify that the title, content and status attributes are required; the

length of title should not exceed 128; the status attribute value should be 1 (draft), 2

(published) or 3 (archived); and the tags attribute should only contain word characters

and commas. In addition, we use normalizeTags to normalize the user-entered tags so

that the tags are unique and properly separated with commas. The last rule is used by

the search feature, which we will describe later.

The validators such as required, length, in and match are all built-in validators provided

by Yii. The normalizeTags validator is a method-based validator that we need to define

in the Post class. For more information about how to specify validation rules, please refer

to .

public function normalizeTags($attribute,$params)

{
$this->tags=Tag::array2string(array unique(Tag::string2array($this->tags)));

}

where array2string and string2array are new methods we need to define in the Tag model

class:

public static function string2array($tags)

{
return preg split(’/\s*,\s*/’,trim($tags),-1,PREG SPLIT NO EMPTY);

}

public static function array2string($tags)

{
return implode(’, ’,$tags);

}

The rules declared in the rules() method are executed one by one when we call the

validate() or save() method of the model instance.

Note: It is very important to remember that attributes appearing in rules() must

be those to be entered by end users. Other attributes, such as id and create time

in the Post model, which are set by our code or database, should not be in rules().

For more details, please refer to .

https://www.yiiframework.com/doc/api/CModel#validate
https://www.yiiframework.com/doc/api/CActiveRecord#save

3.1 Customizing Post Model 23

After making these changes, we can visit the post creation page again to verify that the

new validation rules are taking effect.

3.1.2 Customizing relations() Method

Lastly we customize the relations() method to specify the related objects of a post.

By declaring these related objects in relations(), we can exploit the powerful feature to

access the related object information of a post, such as its author and comments, without

the need to write complex SQL JOIN statements.

We customize the relations() method as follows:

public function relations()

{
return array(

’author’ => array(self::BELONGS TO, ’User’, ’author id’),

’comments’ => array(self::HAS MANY, ’Comment’, ’post id’,

’condition’=>’comments.status=’.Comment::STATUS APPROVED,

’order’=>’comments.create time DESC’),

’commentCount’ => array(self::STAT, ’Comment’, ’post id’,

’condition’=>’status=’.Comment::STATUS APPROVED),

);

}

We also introduce in the Comment model class two constants that are used in the above

method:

class Comment extends CActiveRecord

{
const STATUS PENDING=1;

const STATUS APPROVED=2;

......

}

The relations declared in relations() state that

• A post belongs to an author whose class is User and the relationship is established

based on the author id attribute value of the post;

• A post has many comments whose class is Comment and the relationship is established

based on the post id attribute value of the comments. These comments should be

sorted according to their creation time and the comments must be approved.

24 3. Post Management

• The commentCount relation is a bit special as it returns back an aggregation result

which is about how many comments the post has.

With the above relation declaration, we can easily access the author and comments of a

post like the following:

$author=$post->author;

echo $author->username;

$comments=$post->comments;

foreach($comments as $comment)

echo $comment->content;

For more details about how to declare and use relations, please refer to .

3.1.3 Adding url Property

A post is a content that is associated with a unique URL for viewing it. Instead of calling

CWebApplication::createUrl everywhere in our code to get this URL, we may add a url

property in the Post model so that the same piece of URL creation code can be reused.

Later when we describe how beautify URLs, we will see adding this property will bring us

great convenience.

To add the url property, we modify the Post class by adding a getter method like the

following:

class Post extends CActiveRecord

{
public function getUrl()

{
return Yii::app()->createUrl(’post/view’, array(

’id’=>$this->id,

’title’=>$this->title,

));

}
}

Note that in addition to the post ID, we also add the post title as a GET parameter in the

URL. This is mainly for search engine optimization (SEO) purpose, as we will describe in

Beautifying URLs.

Because CComponent is the ultimate ancestor class of Post, adding the getter method

getUrl() enables us to use the expression like $post->url. When we access $post->url,

https://www.yiiframework.com/doc/api/CWebApplication#createUrl
https://www.yiiframework.com/doc/api/CComponent

3.1 Customizing Post Model 25

the getter method will be executed and its result is returned as the expression value. For

more details about such component features, please refer to the guide.

3.1.4 Representing Status in Text

Because the status of a post is stored as an integer in the database, we need to provide a

textual representation so that it is more intuitive when being displayed to end users. In a

large system, the similar requirement is very common.

As a generic solution, we use the tbl lookup table to store the mapping between integer

values and textual representations that are needed by other data objects. We modify the

Lookup model class as follows to more easily access the textual data in the table,

class Lookup extends CActiveRecord

{
......

private static $ items=array();

public static function items($type)

{
if(!isset(self::$ items[$type]))

self::loadItems($type);

return self::$ items[$type];

}

public static function item($type,$code)

{
if(!isset(self::$ items[$type]))

self::loadItems($type);

return isset(self::$ items[$type][$code]) ? self::$ items[$type][$code] : false;

}

private static function loadItems($type)

{
self::$ items[$type]=array();

$models=self::model()->findAll(array(

’condition’=>’type=:type’,

’params’=>array(’:type’=>$type),

’order’=>’position’,

));

foreach($models as $model)

self::$ items[$type][$model->code]=$model->name;

}
}

26 3. Post Management

Our new code mainly provides two static methods: Lookup::items() and Lookup::item().

The former returns a list of strings belonging to the specified data type, while the latter

returns a particular string for the given data type and data value.

Our blog database is pre-populated with two lookup types: PostStatus and CommentStatus.

The former refers to the possible post statuses, while the latter the comment statuses.

In order to make our code easier to read, we also declare a set of constants to represent

the status integer values. We should use these constants through our code when referring

to the corresponding status values.

class Post extends CActiveRecord

{
const STATUS DRAFT=1;

const STATUS PUBLISHED=2;

const STATUS ARCHIVED=3;

......

}

Therefore, we can call Lookup::items(’PostStatus’) to get the list of possible post statuses

(text strings indexed by the corresponding integer values), and call Lookup::item(’PostStatus’,

Post::STATUS PUBLISHED) to get the string representation of the published status.

3.2 Creating and Updating Posts

With the Post model ready, we need to fine-tune the actions and views for the controller

PostController. In this section, we first customize the access control of CRUD operations;

we then modify the code implementing the create and update operations.

3.2.1 Customizing Access Control

The first thing we want to do is to customize the because the code generated by gii does

not fit our needs.

We modify the accessRules() method in the file /wwwroot/blog/protected/controllers/

PostController.php as follows,

public function accessRules()

{
return array(

array(’allow’, // allow all users to perform ’list’ and ’show’ actions

’actions’=>array(’index’, ’view’),

’users’=>array(’*’),

3.2 Creating and Updating Posts 27

),

array(’allow’, // allow authenticated users to perform any action

’users’=>array(’@’),

),

array(’deny’, // deny all users

’users’=>array(’*’),

),

);

}

The above rules state that all users can access the index and view actions, and authenti-

cated users can access any actions, including the admin action. The user should be denied

access in any other scenario. Note that these rules are evaluated in the order they are

listed here. The first rule matching the current context makes the access decision. For

example, if the current user is the system owner who tries to visit the post creation page,

the second rule will match and it will give the access to the user.

3.2.2 Customizing create and update Operations

The create and update operations are very similar. They both need to display an HTML

form to collect user inputs, validate them, and save them into database. The main dif-

ference is that the update operation will pre-populate the form with the existing post

data found in the database. For this reason, gii generates a partial view /wwwroot/blog/

protected/views/post/ form.php that is embedded in both the create and update views

to render the needed HTML form.

We first change the form.php file so that the HTML form only collects the inputs we

want: title, content, tags and status. We use plain text fields to collect inputs for the

first three attributes, and a dropdown list to collect input for status. The dropdown list

options are the text displays of the possible post statuses:

<?php echo $form->dropDownList($model,’status’,Lookup::items(’PostStatus’)); ?>

In the above, we call Lookup::items(’PostStatus’) to bring back the list of post statuses.

We then modify the Post class so that it can automatically set some attributes (e.g. create

time, author id) before a post is saved to the database. We override the beforeSave()

method as follows,

protected function beforeSave()

{
if(parent::beforeSave())

28 3. Post Management

{
if($this->isNewRecord)

{
$this->create time=$this->update time=time();

$this->author id=Yii::app()->user->id;

}
else

$this->update time=time();

return true;

}
else

return false;

}

When we save a post, we want to update the tbl tag table to reflect the change of tag

frequencies. We can do this work in the afterSave() method, which is automatically

invoked by Yii after a post is successfully saved into the database.

protected function afterSave()

{
parent::afterSave();

Tag::model()->updateFrequency($this-> oldTags, $this->tags);

}

private $ oldTags;

protected function afterFind()

{
parent::afterFind();

$this-> oldTags=$this->tags;

}

In the implementation, because we want to detect if the user changes the tags in case he is

updating an existing post, we need to know what the old tags are. For this reason, we also

write the afterFind() method to keep the old tags in the variable oldTags. The method

afterFind() is invoked automatically by Yii when an AR record is populated with the

data from database.

We are not going to give details of the Tag::updateFrequency() method here. Interested

readers may refer to the file /wwwroot/yii/demos/blog/protected/models/Tag.php.

3.3 Managing Posts

Managing posts mainly refers to listing posts in an administrative view that allows us to

see posts with all statuses, updating them and deleting them. They are accomplished by

3.3 Managing Posts 29

the admin operation and the delete operation, respectively. The code generated by Gii

does not need much modification. Below we mainly explain how these two operations are

implemented.

3.3.1 Listing Posts in Tabular View

The admin operation shows posts with all statuses in a tabular view. The view supports

sorting and pagination. The following is the actionAdmin() method in PostController:

public function actionAdmin()

{
$model=new Post(’search’);

if(isset($ GET[’Post’]))

$model->attributes=$ GET[’Post’];

$this->render(’admin’,array(

’model’=>$model,

));

}

The above code is generated by the Gii tool without any modification. It first creates

a Post model under the search scenario. We will use this model to collect the search

conditions that the user specifies. We then assign to the model the user-supplied data, if

any. Finally, we render the admin view with the model.

Below is the code for the admin view:

<?php

$this->breadcrumbs=array(

’Manage Posts’,

);

?>

<h1>Manage Posts</h1>

<?php $this->widget(’zii.widgets.grid.CGridView’, array(

’dataProvider’=>$model->search(),

’filter’=>$model,

’columns’=>array(

array(

’name’=>’title’,

’type’=>’raw’,

’value’=>’CHtml::link(CHtml::encode($data->title), $data->url)’

),

array(

’name’=>’status’,

’value’=>’Lookup::item("PostStatus",$data->status)’,

30 3. Post Management

’filter’=>Lookup::items(’PostStatus’),

),

array(

’name’=>’create time’,

’type’=>’datetime’,

’filter’=>false,

),

array(

’class’=>’CButtonColumn’,

),

),

)); ?>

We use CGridView to display the posts. It allows us to sort by a column and paginate

through the posts if there are too many to be displayed in a single page. Our change is

mainly about how to display each column. For example, for the title column, we specify

that it should be displayed as a hyperlink that points to the detailed view of the post.

The expression $data->url returns the value of the url property that we define in the Post

class.

Tip: When displaying text, we call CHtml::encode() to encode HTML entities in

it. This prevents from .

3.3.2 Deleting Posts

In the admin data grid, there is a delete button in each row. Clicking on the button should

delete the corresponding post. Internally, this triggers the delete action implemented as

follows:

public function actionDelete()

{
if(Yii::app()->request->isPostRequest)

{
// we only allow deletion via POST request

$this->loadModel()->delete();

if(!isset($ GET[’ajax’]))

$this->redirect(array(’index’));

}
else

throw new CHttpException(400,’Invalid request. Please do not repeat this request again.’);

}

https://www.yiiframework.com/doc/api/CGridView
https://www.yiiframework.com/doc/api/CHtml#encode

3.3 Managing Posts 31

The above code is the one generated by the Gii tool without any change. We would like

to explain a little bit more about the checking on $ GET[’ajax’]. The CGridView widget

has a very nice feature that its sorting, pagination and deletion operations are all done

in AJAX mode by default. That means, the whole page does not get reloaded if any of

the above operations is performed. However, it is also possible that the widget runs in

non-AJAX mode (by setting its ajaxUpdate property to be false or disabling JavaScript on

the client side). It is necessary for the delete action to differentiate these two scenarios: if

the delete request is made via AJAX, we should not redirect the user browser; otherwise,

we should.

Deleting a post should also cause the deletion of all comments for that post. In addition,

we should also update the tbl tag table regarding the tags for the deleted post. Both of

these tasks can be achieved by writing an afterDelete method in the Post model class as

follows,

protected function afterDelete()

{
parent::afterDelete();

Comment::model()->deleteAll(’post id=’.$this->id);

Tag::model()->updateFrequency($this->tags, ’’);

}

The above code is very straightforward: it first deletes all those comments whose post id

is the same as the ID of the deleted post; it then updates the tbl tag table for the tags

of the deleted post.

Tip: We have to explicitly delete all comments for the deleted post here because

SQLite does not really support foreign key constraints. In a DBMS that supports

this constraint (such as MySQL, PostgreSQL), the foreign key constraint can be set

up such that the DBMS automatically deletes the related comments if the post is

deleted. In that case, we no longer this explicit deletion call in our code.

https://www.yiiframework.com/doc/api/CGridView

32 3. Post Management

Chapter 4

Comment Management

4.1 Customizing Comment Model

For the Comment model, we mainly need to customize the rules() and attributeLabels()

methods. The attributeLabels() method returns a mapping between attribute names

and attribute labels. We do not need to touch relations() since the code generated by

the Gii tool is good enough.

4.1.1 Customizing rules() Method

We first customize the validation rules generated by the Gii tool. The following rules are

used for comments:

public function rules()

{
return array(

array(’content, author, email’, ’required’),

array(’author, email, url’, ’length’, ’max’=>128),

array(’email’,’email’),

array(’url’,’url’),

);

}

In the above, we specify that the author, email and content attributes are required; the

length of author, email and url cannot exceed 128; the email attribute must be a valid

email address; and the url attribute must be a valid URL.

4.1.2 Customizing attributeLabels() Method

We then customize the attributeLabels() method to declare the label display for each

model attribute. This method returns an array consisting of name-label pairs. When we

call CHtml::activeLabel() to display an attribute label.

https://www.yiiframework.com/doc/api/CHtml#activeLabel

34 4. Comment Management

public function attributeLabels()

{
return array(

’id’ => ’Id’,

’content’ => ’Comment’,

’status’ => ’Status’,

’create time’ => ’Create Time’,

’author’ => ’Name’,

’email’ => ’Email’,

’url’ => ’Website’,

’post id’ => ’Post’,

);

}

Tip: If the label for an attribute is not declared in attributeLabels(), an algo-

rithm will be used to generate an appropriate label. For example, a label Create

Time will be generated for attributes create time or createTime.

4.1.3 Customizing Saving Process

Because we want to record the creation time of a comment, we override the beforeSave()

method of Comment like we do for the Post model:

protected function beforeSave()

{
if(parent::beforeSave())

{
if($this->isNewRecord)

$this->create time=time();

return true;

}
else

return false;

}

4.2 Creating and Displaying Comments

In this section, we implement the comment display and creation features.

In order to enhance the user interactivity, we would like to prompt users the possible

errors each time he finishes entering one field. This is known client-side input validation.

We will show how this can be done in Yii seamlessly and extremely easy. Note that this

requires Yii version 1.1.1 or later.

4.2 Creating and Displaying Comments 35

4.2.1 Displaying Comments

Instead of displaying and creating comments on individual pages, we use the post detail

page (generated by the view action of PostController). Below the post content display,

we display first a list of comments belonging to that post and then a comment creation

form.

In order to display comments on the post detail page, we modify the view script /wwwroot/

blog/protected/views/post/view.php as follows,

...post view here...

<div id="comments">

<?php if($model->commentCount>=1): ?>

<h3>

<?php echo $model->commentCount . ’comment(s)’; ?>

</h3>

<?php $this->renderPartial(’ comments’,array(

’post’=>$model,

’comments’=>$model->comments,

)); ?>

<?php endif; ?>

</div>

In the above, we call renderPartial() to render a partial view named comments to display

the list of comments belonging to the current post. Note that in the view we use the

expression $model->comments to retrieve the comments for the post. This is valid because

we have declared a comments relation in the Post class. Evaluating this expression would

trigger an implicit JOIN database query to bring back the proper comments. This feature

is known as .

The partial view comments is not very interesting. It mainly goes through every comment

and displays the detail of it. Interested readers may refer to /wwwroot/yii/demos/blog/

protected/views/post/ comments.php.

4.2.2 Creating Comments

To handle comment creation, we first modify the actionView() method of PostController

as follows,

public function actionView()

{
$post=$this->loadModel();

36 4. Comment Management

$comment=$this->newComment($post);

$this->render(’view’,array(

’model’=>$post,

’comment’=>$comment,

));

}

protected function newComment($post)

{
$comment=new Comment;

if(isset($ POST[’Comment’]))

{
$comment->attributes=$ POST[’Comment’];

if($post->addComment($comment))

{
if($comment->status==Comment::STATUS PENDING)

Yii::app()->user->setFlash(’commentSubmitted’,’Thank you for your comment. Your comment will be posted once it is approved.’);

$this->refresh();

}
}
return $comment;

}

And then we modify the Post model class by adding the method addComment() as follows,

public function addComment($comment)

{
if(Yii::app()->params[’commentNeedApproval’])

$comment->status=Comment::STATUS PENDING;

else

$comment->status=Comment::STATUS APPROVED;

$comment->post id=$this->id;

return $comment->save();

}

In the above, we call the newComment() method before we render view. In the newComment()

method, we generate a Comment instance and check if the comment form is submitted. If so,

we try to add the comment for the post by calling $post->addComment($comment). If it goes

through, we refresh the post detail page, which will display the newly created comment

unless approval is required. In the case where the comment first requires approval prior

to display, we will show a flash message to indicate to the user that the comment will

be displayed once approved. A flash message is usually a confirmation message displayed

to end users. If the user clicks on the refresh button of his browser, the message will

disappear.

4.2 Creating and Displaying Comments 37

We also need to modify /wwwroot/blog/protected/views/post/view.php furthermore,

......

<div id="comments">

......

<h3>Leave a Comment</h3>

<?php if(Yii::app()->user->hasFlash(’commentSubmitted’)): ?>

<div class="flash-success">

<?php echo Yii::app()->user->getFlash(’commentSubmitted’); ?>

</div>

<?php else: ?>

<?php $this->renderPartial(’/comment/ form’,array(

’model’=>$comment,

)); ?>

<?php endif; ?>

</div><!-- comments -->

In the above code, we display the flash message if it is available. If not, we display

the comment input form by rendering the partial view /wwwroot/blog/protected/views/

comment/ form.php.

4.2.3 Ajax-based Validation

In order to improve user experience, we can use Ajax-based form field validation so that

the user is provided with validation feedback as they fill out the form, before having to

submit the entire form to the server. To support Ajax-based validation on the comment

form, we need to make some minor changes to both the comment form view /wwwroot/

blog/protected/views/comment/ form.php and the newComment() method.

In the form.php file, we mainly need to set CActiveForm::enableAjaxValidation to be true

when we create the CActiveForm widget:

<div class="form">

<?php $form=$this->beginWidget(’CActiveForm’, array(

’id’=>’comment-form’,

’enableAjaxValidation’=>true,

)); ?>

......

<?php $this->endWidget(); ?>

</div><!-- form -->

https://www.yiiframework.com/doc/api/CActiveForm#enableAjaxValidation
https://www.yiiframework.com/doc/api/CActiveForm

38 4. Comment Management

And in the newComment() method, we insert a piece of code to respond to the AJAX

validation requests. The code checks if there is a POST variable named ajax. If so, it

displays the validation results by calling CActiveForm::validate.

protected function newComment($post)

{
$comment=new Comment;

if(isset($ POST[’ajax’]) && $ POST[’ajax’]===’comment-form’)

{
echo CActiveForm::validate($comment);

Yii::app()->end();

}

if(isset($ POST[’Comment’]))

{
$comment->attributes=$ POST[’Comment’];

if($post->addComment($comment))

{
if($comment->status==Comment::STATUS PENDING)

Yii::app()->user->setFlash(’commentSubmitted’,’Thank you for your comment. Your comment will be posted once it is approved.’);

$this->refresh();

}
}
return $comment;

}

4.3 Managing Comments

Comment management includes updating, deleting and approving comments. These op-

erations are implemented as actions in the CommentController class.

4.3.1 Updating and Deleting Comments

The code generated by Gii for updating and deleting comments remains largely unchanged.

4.3.2 Approving Comments

When comments are newly created, they are in pending approval status and need to be

approved in order to be visible to guest users. Approving a comment is mainly about

changing the status column of the comment.

We create an actionApprove() method in CommentController as follows,

public function actionApprove()

https://www.yiiframework.com/doc/api/CActiveForm#validate

4.3 Managing Comments 39

{
if(Yii::app()->request->isPostRequest)

{
$comment=$this->loadModel();

$comment->approve();

$this->redirect(array(’index’));

}
else

throw new CHttpException(400,’Invalid request...’);

}

In the above, when the approve action is invoked via a POST request, we call the approve()

method defined in the Comment model to change the status. We then redirect the user

browser to the page displaying the post that this comment belongs to.

Of course, we also need to create the approve() method in the Comment model. It is as

follows,

public function approve()

{
$this->status=Comment::STATUS APPROVED;

$this->update(array(’status’));

}

Here we are simply setting the status property of the comment to approved as defined by

the status constants in the Comment class:

class Comment extends CActiveRecord

{
...

const STATUS PENDING=1;

const STATUS APPROVED=2;

..

}

and then calling the update() method to save this newly set property to the database.

We also modify the actionIndex() method of CommentController to show all comments.

We would like to see comments pending approval show up first.

public function actionIndex()

40 4. Comment Management

{
$dataProvider=new CActiveDataProvider(’Comment’, array(

’criteria’=>array(

’with’=>’post’,

’order’=>’t.status, t.create time DESC’,

),

));

$this->render(’index’,array(

’dataProvider’=>$dataProvider,

));

}

Notice that in the above code, because both tbl post and tbl comment have columns

status and create time, we need to disambiguate the corresponding column reference by

prefixing them with table alias names. As described in , the alias for the primary table in

a relational query is always t. Therefore, we are prefixing t to the status and create time

columns in the above code to indicate we want these values taken from the primary table,

tbl comment.

Like the post index view, the index view for CommentController uses CListView to display

the comment list which in turn uses the partial view /wwwroot/blog/protected/views/

comment/ view.php to display the detail of each individual comment. We will not go into

details here. Interested readers may refer to the corresponding file in the blog demo

/wwwroot/yii/demos/blog/protected/views/comment/ view.php.

https://www.yiiframework.com/doc/api/CListView

Chapter 5

Portlets

5.1 Creating User Menu Portlet

Based on the requirements analysis, we need three different portlets: the ”user menu”

portlet, the ”tag cloud” portlet and the ”recent comments” portlet. We will develop these

portlets by extending the CPortlet widget provided by Yii.

In this section, we will develop our first concrete portlet - the user menu portlet which

displays a list of menu items that are only available to authenticated users. The menu

contains four items:

• Approve Comments: a hyperlink that leads to a list of comments pending approval;

• Create New Post: a hyperlink that leads to the post creation page;

• Manage Posts: a hyperlink that leads to the post management page;

• Logout: a link button that would log out the current user.

5.1.1 Creating UserMenu Class

We create the UserMenu class to represent the logic part of the user menu portlet. The

class is saved in the file /wwwroot/blog/protected/components/UserMenu.php which has the

following content:

Yii::import(’zii.widgets.CPortlet’);

class UserMenu extends CPortlet

{
public function init()

{
$this->title=CHtml::encode(Yii::app()->user->name);

parent::init();

https://www.yiiframework.com/doc/api/CPortlet

42 5. Portlets

}

protected function renderContent()

{
$this->render(’userMenu’);

}
}

The UserMenu class extends from the CPortlet class from the zii library. It overrides

both the init() method and the renderContent() method of CPortlet. The former sets

the portlet title to be the name of the current user; the latter generates the portlet body

content by rendering a view named userMenu.

Tip: Notice that we have to explicitly include the CPortlet class by calling Yii::

import() before we refer to it the first time. This is because CPortlet is part of the

zii project – the official extension library for Yii. For performance consideration,

classes in this project are not listed as core classes. Therefore, we have to import it

before we use it the first time.

5.1.2 Creating userMenu View

Next, we create the userMenu view which is saved in the file /wwwroot/blog/protected/

components/views/userMenu.php:

<?php echo CHtml::link(’Create New Post’,array(’post/create’)); ?>

<?php echo CHtml::link(’Manage Posts’,array(’post/admin’)); ?>

<?php echo CHtml::link(’Approve Comments’,array(’comment/index’))

. ’ (’ . Comment::model()->pendingCommentCount . ’)’; ?>

<?php echo CHtml::link(’Logout’,array(’site/logout’)); ?>

Info: By default, view files for a widget should be placed under the views sub-

directory of the directory containing the widget class file. The file name must be

the same as the view name.

5.2 Creating Tag Cloud Portlet 43

5.1.3 Using UserMenu Portlet

It is time for us to make use of our newly completed UserMenu portlet. We modify the

layout view file /wwwroot/blog/protected/views/layouts/column2.php as follows:

......

<div id="sidebar">

<?php if(!Yii::app()->user->isGuest) $this->widget(’UserMenu’); ?>

</div>

......

In the above, we call the widget() method to generate and execute an instance of the

UserMenu class. Because the portlet should only be displayed to authenticated users, we

only call widget() when the isGuest property of the current user is false (meaning the

user is authenticated).

5.1.4 Testing UserMenu Portlet

Let’s test what we have so far.

1. Open a browser window and enter the URL http://www.example.com/blog/index.

php. Verify that there is nothing displayed in the side bar section of the page.

2. Click on the Login hyperlink and fill out the login form to login. If successful, verify

that the UserMenu portlet appears in the side bar and the portlet has the username

as its title.

3. Click on the ’Logout’ hyperlink in the UserMenu portlet. Verify that the logout action

is successful and the UserMenu portlet disappears.

5.1.5 Summary

What we have created is a portlet that is highly reusable. We can easily reuse it in a

different project with little or no modification. Moreover, the design of this portlet follows

closely the philosophy that logic and presentation should be separated. While we did not

point this out in the previous sections, such practice is used nearly everywhere in a typical

Yii application.

5.2 Creating Tag Cloud Portlet

displays a list of post tags with visual decorations hinting the popularity of each individual

tag.

44 5. Portlets

5.2.1 Creating TagCloud Class

We create the TagCloud class in the file /wwwroot/blog/protected/components/TagCloud.

php. The file has the following content:

Yii::import(’zii.widgets.CPortlet’);

class TagCloud extends CPortlet

{
public $title=’Tags’;

public $maxTags=20;

protected function renderContent()

{
$tags=Tag::model()->findTagWeights($this->maxTags);

foreach($tags as $tag=>$weight)

{
$link=CHtml::link(CHtml::encode($tag), array(’post/index’,’tag’=>$tag));

echo CHtml::tag(’span’, array(

’class’=>’tag’,

’style’=>"font-size:{$weight}pt",
), $link)."\n";

}
}

}

Unlike the UserMenu portlet, the TagCloud portlet does not use a view. Instead, its presen-

tation is done in the renderContent() method. This is because the presentation does not

contain much HTML tags.

We display each tag as a hyperlink to the post index page with the corresponding tag

parameter. The font size of each tag link is adjusted according to their relative weight

among other tags. If a tag has higher frequency value than the other, it will have a bigger

font size.

5.2.2 Using TagCloud Portlet

Usage of the TagCloud portlet is very simple. We modify the layout file /wwwroot/blog/

protected/views/layouts/column2.php as follows,

......

<div id="sidebar">

<?php if(!Yii::app()->user->isGuest) $this->widget(’UserMenu’); ?>

5.3 Creating Recent Comments Portlet 45

<?php $this->widget(’TagCloud’, array(

’maxTags’=>Yii::app()->params[’tagCloudCount’],

)); ?>

</div>

......

5.3 Creating Recent Comments Portlet

In this section, we create the last portlet that displays a list of comments recently pub-

lished.

5.3.1 Creating RecentComments Class

We create the RecentComments class in the file /wwwroot/blog/protected/components/RecentComments.

php. The file has the following content:

Yii::import(’zii.widgets.CPortlet’);

class RecentComments extends CPortlet

{
public $title=’Recent Comments’;

public $maxComments=10;

public function getRecentComments()

{
return Comment::model()->findRecentComments($this->maxComments);

}

protected function renderContent()

{
$this->render(’recentComments’);

}
}

In the above we invoke the findRecentComments method which is defined in the Comment

class as follows,

class Comment extends CActiveRecord

{
......

public function findRecentComments($limit=10)

{

46 5. Portlets

return $this->with(’post’)->findAll(array(

’condition’=>’t.status=’.self::STATUS APPROVED,

’order’=>’t.create time DESC’,

’limit’=>$limit,

));

}
}

5.3.2 Creating recentComments View

The recentComments view is saved in the file /wwwroot/blog/protected/components/views/

recentComments.php. It simply displays every comment returned by the RecentComments:

:getRecentComments() method.

5.3.3 Using RecentComments Portlet

We modify the layout file /wwwroot/blog/protected/views/layouts/column2.php to embed

this last portlet,

......

<div id="sidebar">

<?php if(!Yii::app()->user->isGuest) $this->widget(’UserMenu’); ?>

<?php $this->widget(’TagCloud’, array(

’maxTags’=>Yii::app()->params[’tagCloudCount’],

)); ?>

<?php $this->widget(’RecentComments’, array(

’maxComments’=>Yii::app()->params[’recentCommentCount’],

)); ?>

</div>

......

Chapter 6

Final Work

6.1 Beautifying URLs

The URLs linking various pages of our blog application currently look ugly. For example,

the URL for the page showing a post looks like the following:

/index.php?r=post/show&id=1&title=A+Test+Post

In this section, we describe how to beautify these URLs and make them SEO-friendly.

Our goal is to be able to use the following URLs in the application:

1. /index.php/posts/yii: leads to the page showing a list of posts with tag yii;

2. /index.php/post/2/A+Test+Post: leads to the page showing the detail of the post

with ID 2 whose title is A Test Post;

3. /index.php/post/update?id=1: leads to the page that allows updating the post with

ID 1.

Note that in the second URL format, we include the post title in the URL. This is mainly

to make the URL SEO friendly. It is said that search engines may also respect the words

found in a URL when it is being indexed.

To achieve our goal, we modify the as follows,

return array(

......

’components’=>array(

......

’urlManager’=>array(

’urlFormat’=>’path’,

’rules’=>array(

48 6. Final Work

’post/<id:\d+>/<title:.*?>’=>’post/view’,
’posts/<tag:.*?>’=>’post/index’,

’<controller:\w+>/<action:\w+>’=>’<controller>/<action>’,
),

),

),

);

In the above, we configure the component by setting its urlFormat property to be path

and adding a set of rules.

The rules are used by urlManager to parse and create the URLs in the desired format.

For example, the second rule says that if a URL /index.php/posts/yii is requested, the

urlManager component should be responsible to dispatch the request to the post/index

and generate a tag GET parameter with the value yii. On the other hand, when creating

a URL with the route post/index and parameter tag, the urlManager component will also

use this rule to generate the desired URL /index.php/posts/yii. For this reason, we say

that urlManager is a two-way URL manager.

The urlManager component can further beautify our URLs, such as hiding index.php in

the URLs, appending suffix like .html to the URLs. We can obtain these features easily

by configuring various properties of urlManager in the application configuration. For more

details, please refer to .

6.2 Logging Errors

A production Web application often needs sophisticated logging for various events. In our

blog application, we would like to log the errors occurring when it is being used. Such

errors could be programming mistakes or users’ misuse of the system. Logging these errors

will help us to improve the blog application.

We enable the error logging by modifying the as follows,

return array(

’preload’=>array(’log’),

......

’components’=>array(

’log’=>array(

’class’=>’CLogRouter’,

’routes’=>array(

array(

’class’=>’CFileLogRoute’,

6.3 Final Tune-up and Deployment 49

’levels’=>’error, warning’,

),

),

),

......

),

);

With the above configuration, if an error or warning occurs, detailed information will be

logged and saved in a file located under the directory /wwwroot/blog/protected/runtime.

The log component offers more advanced features, such as sending log messages to a list

of email addresses, displaying log messages in JavaScript console window, etc. For more

details, please refer to .

6.3 Final Tune-up and Deployment

We are close to finish our blog application. Before deployment, we would like to do some

tune-ups.

6.3.1 Changing Home Page

We change to use the post list page as the home page. We modify the as follows,

return array(

......

’defaultController’=>’post’,

......

);

Tip: Because PostController already declares index to be its default action, when

we access the home page of the application, we will see the result generated by the

index action of the post controller.

6.3.2 Enabling Schema Caching

Because ActiveRecord relies on the metadata about tables to determine the column infor-

mation, it takes time to read the metadata and analyze it. This may not be a problem

during development stage, but for an application running in production mode, it is a total

waste of time if the database schema does not change. Therefore, we should enable the

schema caching by modifying the application configuration as follows,

50 6. Final Work

return array(

......

’components’=>array(

......

’cache’=>array(

’class’=>’CDbCache’,

),

’db’=>array(

’class’=>’system.db.CDbConnection’,

’connectionString’=>’sqlite:/wwwroot/blog/protected/data/blog.db’,

’schemaCachingDuration’=>3600,

),

),

);

In the above, we first add a cache component which uses a default SQLite database as the

caching storage. If our server is equipped with other caching extensions, such as APC,

we could change to use them as well. We also modify the db component by setting its

schemaCachingDuration property to be 3600, which means the parsed database schema

data can remain valid in cache for 3600 seconds.

6.3.3 Disabling Debugging Mode

We modify the entry script file /wwwroot/blog/index.php by removing the line defining

the constant YII DEBUG. This constant is useful during development stage because it allows

Yii to display more debugging information when an error occurs. However, when the

application is running in production mode, displaying debugging information is not a

good idea because it may contain sensitive information such as where the script file is

located, and the content in the file, etc.

6.3.4 Deploying the Application

The final deployment process manly involves copying the directory /wwwroot/blog to the

target directory. The following checklist shows every needed step:

1. Install Yii in the target place if it is not available;

2. Copy the entire directory /wwwroot/blog to the target place;

3. Edit the entry script file index.php by pointing the $yii variable to the new Yii

bootstrap file;

4. Edit the file protected/yiic.php by setting the $yiic variable to be the new Yii

yiic.php file;

https://www.yiiframework.com/doc/api/CDbConnection#schemaCachingDuration

6.4 Future Enhancements 51

5. Change the permission of the directories assets and protected/runtime so that they

are writable by the Web server process.

6.4 Future Enhancements

6.4.1 Using a Theme

Without writing any code, our blog application is already . To use a theme, we mainly

need to develop the theme by writing customized view files in the theme. For example,

to use a theme named classic that uses a different page layout, we would create a layout

view file /wwwroot/blog/themes/classic/views/layouts/main.php. We also need to change

the application configuration to indicate our choice of the classic theme:

return array(

......

’theme’=>’classic’,

......

);

6.4.2 Internationalization

We may also internationalize our blog application so that its pages can be displayed in

different languages. This mainly involves efforts in two aspects.

First, we may create view files in different languages. For example, for the index page

of PostController, we can create a view file /wwwroot/blog/protected/views/post/zh cn/

index.php. When the application is configured to use simplified Chinese (the language

code is zh cn), Yii will automatically use this new view file instead of the original one.

Second, we may create message translations for those messages generated by code. The

message translations should be saved as files under the directory /wwwroot/blog/protected/

messages. We also need to modify the code where we use text strings by enclosing them

in the method call Yii::t().

For more details about internationalization, please refer to .

6.4.3 Improving Performance with Cache

While the Yii framework itself is , it is not necessarily true that an application written

in Yii efficient. There are several places in our blog application that we can improve

the performance. For example, the tag clould portlet could be one of the performance

bottlenecks because it involves complex database query and PHP logic.

52 6. Final Work

We can make use of the sophisticated provided by Yii to improve the performance. One

of the most useful components in Yii is COutputCache, which caches a fragment of page

display so that the underlying code generating the fragment does not need to be executed

for every request. For example, in the layout file /wwwroot/blog/protected/views/layouts/

column2.php, we can enclose the tag cloud portlet with COutputCache:

<?php if($this->beginCache(’tagCloud’, array(’duration’=>3600))) { ?>

<?php $this->widget(’TagCloud’, array(

’maxTags’=>Yii::app()->params[’tagCloudCount’],

)); ?>

<?php $this->endCache(); } ?>

With the above code, the tag cloud display will be served from cache instead of being

generated on-the-fly for every request. The cached content will remain valid in cache for

3600 seconds.

6.4.4 Adding New Features

Our blog application only has very basic functionalities. To become a complete blog

system, more features are needed, for example, calendar portlet, email notifications, post

categorization, archived post portlet, and so on. We will leave the implementation of these

features to interested readers.

https://www.yiiframework.com/doc/api/COutputCache
https://www.yiiframework.com/doc/api/COutputCache

	Contents
	License
	Getting Started
	Building a Blog System using Yii
	Testdriving with Yii
	Installing Yii
	Creating Skeleton Application
	Application Workflow

	Requirements Analysis
	Overall Design

	Initial Prototyping
	Setting Up Database
	Creating Database
	Establishing Database Connection

	Scaffolding
	Installing Gii
	Creating Models
	Implementing CRUD Operations
	Testing

	Authenticating User
	Summary

	Post Management
	Customizing Post Model
	Customizing rules() Method
	Customizing relations() Method
	Adding url Property
	Representing Status in Text

	Creating and Updating Posts
	Customizing Access Control
	Customizing create and update Operations

	Managing Posts
	Listing Posts in Tabular View
	Deleting Posts

	Comment Management
	Customizing Comment Model
	Customizing rules() Method
	Customizing attributeLabels() Method
	Customizing Saving Process

	Creating and Displaying Comments
	Displaying Comments
	Creating Comments
	Ajax-based Validation

	Managing Comments
	Updating and Deleting Comments
	Approving Comments

	Portlets
	Creating User Menu Portlet
	Creating UserMenu Class
	Creating userMenu View
	Using UserMenu Portlet
	Testing UserMenu Portlet
	Summary

	Creating Tag Cloud Portlet
	Creating TagCloud Class
	Using TagCloud Portlet

	Creating Recent Comments Portlet
	Creating RecentComments Class
	Creating recentComments View
	Using RecentComments Portlet

	Final Work
	Beautifying URLs
	Logging Errors
	Final Tune-up and Deployment
	Changing Home Page
	Enabling Schema Caching
	Disabling Debugging Mode
	Deploying the Application

	Future Enhancements
	Using a Theme
	Internationalization
	Improving Performance with Cache
	Adding New Features

