Avro 1.3.2 Specification

Table of contents

I 1 11 0o 1T i o 1O 2
2 SCNEMA DECIAIAION.......eeeeieeeeeee ettt ettt et esae e beeneesreeeeeneans 2
2.1 PHIMITIVE TYPES...c.teeitie ettt sttt ettt te e st e et eesbe e e nbeesaeeesbeesbeasnseenseesnneens 2
2.2 COMPIEX TYPES....ceveeeeeieecteeiteete sttt et e e e e s st et e e e be e tesaeesseensesseesteesesneesseensesneenrens 2
P2k B N\ L= 1 0T RURS PR 5
3 DAA SENTAlIZALION......ccueeiieeereee et s et esre et e e e e teeeesreenneenreeneennens 6
3L ENCOOINGS. ...ttt b et bbbt n e ne e 6
32 BINary ENCOOING.....c.eiiuiiiieeieeiese ettt sttt ae e sre s 6
RIS @ N N = 0Tore o [o RS PPS 9
S o @ (0 = SRR 10
5 ObjECt CONAINEY FlES.......ccuieiece ettt ne e nne s 10
5.1 REQUITEA COUECS...... ..ttt sttt sttt st s sb e b b se e e 12
6 ProtOCOl DECIAraLION.........cevtieieeeiesieeie et esreeeesreesseenseeneensens 12
B.1 IMBSSAOES. ...ttt ettt ettt e e b e e nn e nr e e nn e e e ne e e ne e sne e nnee s 12
6.2 SAMPIE PrOLOCOL ..ot e e e eenne e 13
7 ProtoCOl Wit FOMMEL.........couiiiieiieiieieiesie ettt st st e e 13
7.1 MESSAGE TIANGPONT.....ceieeieiiiee ettt sab e s nae e e s ba e sne e e snae e sanee s 13
7.2 MESSATE FTAMING.eiuiiieieisie sttt sttt ettt bbbttt sae b e nns 14
7.3 HANASNAKE.........coiiiieciee ettt se e ae e nreeneeenee e 15
7.4 Call FOMME@L.....ceieieie ettt sttt b e e s ae e st e e e e s seenbeeneesreenseeneens 16

8 SCNEMA RESOIULION. ... eeeeeeee ettt ettt e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeaeees 17

Avro 1.3.2 Specification

1. Introduction

This document defines Avro. It isintended to be the authoritative specification.
Implementations of Avro must adhere to this document.

2. Schema Declar ation

A Schemais represented in JSON by one of

e A JSON string, naming a defined type.

e A JSON object, of the form:
{"type": "typeNane" ...attributes...}
where typeName is either aprimitive or derived type name, as defined below. Attributes

not defined in this document are permitted as metadata, but must not affect the format of
serialized data.
« A JSON array, representing a union of embedded types.

2.1. Primitive Types

The set of primitive type namesis:

nul | : novaue

bool ean: abinary value

i nt : 32-bit signed integer

| ong: 64-bit signed integer

f 1 oat : single precision (32-bit) IEEE 754 floating-point number
doubl e: double precision (64-bit) IEEE 754 floating-point number
byt es: sequence of 8-bit unsigned bytes

st ri ng: unicode character sequence

Primitive types have no specified attributes.

Primitive type names are also defined type names. Thus, for example, the schema"string" is
equivalent to:

{"type": "string"}
2.2. Complex Types

Avro supports six kinds of complex types: records, enums, arrays, maps, unions and fixed.

2.2.1. Records

Records use the type name "record"” and support three attributes:

Page 2

http://www.json.org/

Avro 1.3.2 Specification

following attributes:

name: aJSON string providing the name of the record (required).

namespace, a JSON string that qualifies the name;

doc: aJSON string providing documentation to the user of this schema (optional).
fiel ds: aJSON array, listing fields (required). Each field isa JSON object with the

* name: aJSON string providing the name of the field (required), and

* doc: aJSON string describing thisfield for users (optional).

* type: A JSON object defining a schema, or a JSON string naming arecord

definition (required).

» defaul t: A default valuefor thisfield, used when reading instances that lack this
field (optional). Permitted values depend on the field's schematype, according to the
table below. Default values for union fields correspond to the first schemain the
union. Default values for bytes and fixed fields are JISON strings, where Unicode
code points 0-255 are mapped to unsigned 8-bit byte values 0-255.

null null
boolean boolean
int,long integer
float,double number
bytes string
string string
record object
enum string
array array
map object
fixed string

Table 1: field default values

null
true

1

11
"\uOOFF"
"foo"
{"a" 1}
"FOO"
[1]

{"a™ 1}
"\uOoff"

o order: specifies how thisfield impacts sort ordering of this record (optional). Valid
values are "ascending” (the default), "descending”, or "ignore". For more details on

how thisis used, see the the sort order section below.

For example, alinked-list of 64-bit values may be defined with:

{

Page 3

Avro 1.3.2 Specification

2.2.2. Enums

Enums use the type name "enum" and support the following attributes:

name: aJSON string providing the name of the enum (required).

namespace, a JSON string that qualifies the name;

doc: aJSON string providing documentation to the user of this schema (optional).
synbol s: aJSON array, listing symbols, as JSON strings (required). All symbolsin an
enum must be unique; duplicates are prohibited.

For example, playing card suits might be defined with:

2.2.3. Arrays

Arraysuse thetypename” ar r ay" and support asingle attribute:
e it ens: theschemaof the array'sitems.

For example, an array of stringsis declared with:

2.2.4. Maps

Maps use the type name " map" and support one attribute:
« val ues: the schema of the map's values.

Map keys are assumed to be strings.

For example, amap from string to long is declared with:

2.2.5. Unions

Avro 1.3.2 Specification

Unions, as mentioned above, are represented using JSON arrays. For example,
["string", "null"] declaresaschemawhich may be either astring or null.

Unions may not contain more than one schema with the same type, except for the named
types record, fixed and enum. For example, unions containing two array types or two map
types are not permitted, but two types with different names are permitted. (Names permit
efficient resolution when reading and writing unions.)

Unions may not immediately contain other unions.

2.2.6. Fixed

Fixed usesthetype name " f i xed" and supports two attributes:

e nane: astring naming this fixed (required).

e namespace, a string that qualifies the name;

e si ze: aninteger, specifying the number of bytes per value (required).

For example, 16-byte quantity may be declared with:
{"type": "fixed", "size": 16, "nane": "nmd5"}

2.3. Names

Record, enums and fixed are named types. Each has a fullname that is composed of two
parts, a name and a namespace. Equality of names is defined on the fullname.

The name portion of a fullname, and record field names must:

o dstartwith[A- Za-z_]
» subsequently containonly [A- Za- z0- 9_]

A namespace is a dot-separated sequence of such names.

In record, enum and fixed definitions, the fullname is determined in one of the following

ways:

« A name and namespace are both specified. For example, one might use" nane": " X",
"nanespace": "org.foo" toindicatethefullnameor g. f 0o. X.

« A fullnameis specified. If the name specified contains a dot, then it is assumed to be a
fullname, and any namespace also specified isignored. For example, use" nane" :
"org. foo. X" toindicate the fullnameor g. f 0o. X.

« A nameonly is specified, i.e., aname that contains no dots. In this case the namespace is
taken from the most tightly enclosing schema or protocol. For example, if " nane" :

" X" is specified, and this occurs within afield of the record definition of or g. f 00. Y,
then the fullnameisor g. f 0o. X.

Page 5

Avro 1.3.2 Specification

References to previously defined names are as in the latter two cases above: if they contain a
dot they are afullname, if they do not contain a dot, the namespace is the namespace of the
enclosing definition.

Primitive type names have no namespace and their names may not be defined in any
namespace. A schemamay only contain multiple definitions of afullname if the definitions
are equivalent.

3. Data Serialization

Avro datais always serialized with its schema. Files that store Avro data should always also
include the schemafor that datain the same file. Avro-based remote procedure call (RPC)
systems must also guarantee that remote recipients of data have a copy of the schema used to
write that data.

Because the schema used to write datais always available when the datais read, Avro data
itself is not tagged with type information. The schemais required to parse data.

In general, both serialization and deserialization proceed as a depth-first, left-to-right
traversal of the schema, serializing primitive types as they are encountered.
3.1. Encodings

Avro specifies two serialization encodings. binary and JSON. Most applications will use the
binary encoding, asit is smaller and faster. But, for debugging and web-based applications,
the JSON encoding may sometimes be appropriate.

3.2. Binary Encoding

3.2.1. Primitive Types

Primitive types are encoded in binary as follows:

e nul | iswritten as zero bytes.
« abool ean iswritten asasingle byte whose value is either O (false) or 1 (true).
e int andl ong vaues are written using variable-length zig-zag coding. Some examples:

0 00
-1 01
1 02

Page 6

http://lucene.apache.org/java/2_4_0/fileformats.html#VInt
http://code.google.com/apis/protocolbuffers/docs/encoding.html#types

Avro 1.3.2 Specification

2 03
2 04
- 64 7f
64 80 01

« afl oat iswritten as4 bytes. Thefloat is converted into a 32-bit integer using a method
equivalent to Javas floatTolntBits and then encoded in little-endian format.

« adoubl e iswritten as 8 bytes. The double is converted into a 64-bit integer using a
method equivalent to Java's doubleTol ongBits and then encoded in little-endian format.

« byt es areencoded asal ong followed by that many bytes of data.

e astringisencoded asal ong followed by that many bytes of UTF-8 encoded
character data.

For example, the three-character string "foo" would be encoded as the long value 3
(encoded as hex 06) followed by the UTF-8 encoding of 'f', '0', and '0' (the hex bytes 66
6f 6f):

06 66 6f 6f

3.2.2. Complex Types

Complex types are encoded in binary as follows:

3.2.2.1. Records

A record is encoded by encoding the values of its fieldsin the order that they are declared. In
other words, arecord is encoded as just the concatenation of the encodings of its fields. Field
values are encoded per their schema.

For example, the record schema

“type": "record",
"nane": "test",
"fields" : [
n naITB" : n a" , n t ypell : n I Ongll} ,

"name": "b", "type": "string"}

[SR S Sy

Page 7

http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatToIntBits%28float%29
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleToLongBits%28double%29

Avro 1.3.2 Specification

An instance of thisrecord whose a field has value 27 (encoded as hex 36) and whose b field
has value "foo" (encoded as hex bytes06 66 6f 6f), would be encoded ssmply asthe
concatenation of these, namely the hex byte sequence:

36 06 66 6f 6f

3.2.2.2. Enums

An enum isencoded by ai nt , representing the zero-based position of the symbol in the
schema.

For example, consider the enum:

{"type": "enunt, "nane": "Foo", "synbols": ["A", "B", "C',
"ol)

Thiswould be encoded by ani nt between zero and three, with zero indicating "A", and 3
indicating "D".

3.2.2.3. Arrays

Arrays are encoded as a series of blocks. Each block consists of al ong count value,
followed by that many array items. A block with count zero indicates the end of the array.
Each item is encoded per the array's item schema.

If ablock's count is negative, its absolute value is used, and the count is followed
immediately by al ong block size indicating the number of bytes in the block. This block
size permits fast skipping through data, e.g., when projecting arecord to a subset of itsfields.

For example, the array schema

{"type": "array", "itenms": "long"}

an array containing the items 3 and 27 could be encoded as the long value 2 (encoded as hex
04) followed by long values 3 and 27 (encoded as hex 06 36) terminated by zero:

04 06 36 00

The blocked representation permits one to read and write arrays larger than can be buffered
in memory, since one can start writing items without knowing the full length of the array.

3.2.2.4. Maps

Maps are encoded as a series of blocks. Each block consists of al ong count value, followed
by that many key/value pairs. A block with count zero indicates the end of the map. Each
item is encoded per the map's value schema.

Page 8

Avro 1.3.2 Specification

If ablock's count is negative, its absolute value is used, and the count is followed
immediately by al ong block size indicating the number of bytesin the block. This block
size permits fast skipping through data, e.g., when projecting arecord to a subset of itsfields.

The blocked representation permits one to read and write maps larger than can be buffered in
memory, since one can start writing items without knowing the full length of the map.
3.2.2.5. Unions

A union is encoded by first writing al ong value indicating the zero-based position within
the union of the schema of its value. The value is then encoded per the indicated schema
within the union.

For example, the union schema|["stri ng", "nul | "] would encode:

« nul |l astheinteger 1 (theindex of "null" in the union, encoded as hex 02):
02

« thestring"a" aszero (theindex of "string” in the union), followed by the serialized
string:
00 02 61

3.2.2.6. Fixed

Fixed instances are encoded using the number of bytes declared in the schema.

3.3. JSON Encoding

Except for unions, the JISON encoding is the same as is used to encode field default values.

The value of aunion is encoded in JSON as follows;

o ifitstypeisnul | ,thenitisencoded asaJSON null;

« otherwiseit isencoded as aJSON object with one name/value pair whose name s the
type's name and whose value is the recursively encoded value. For Avro's named types
(record, fixed or enum) the user-specified nameis used, for other types the type nameis
used.

For example, the union schema["nul | ", "string", " Foo"] , where Foo isarecord
name, would encode:

e null asnull;

« thestring”a" as{"string": "a"};and

e aFooinstanceas{"Foo": {...}},where{. ..} indicatesthe JSON encoding of a
Foo instance.

Page 9

Avro 1.3.2 Specification

Note that a schemais still required to correctly process JSON-encoded data. For example, the
JSON encoding does not distinguish betweeni nt and | ong, f| oat and doubl e, records
and maps, enums and strings, etc.

4. Sort Order

Avro defines a standard sort order for data. This permits data written by one system to be
efficiently sorted by another system. This can be an important optimization, as sort order
comparisons are sometimes the most frequent per-object operation. Note also that Avro
binary-encoded data can be efficiently ordered without deserializing it to objects.

Dataitems may only be compared if they have identical schemas. Pairwise comparisons are
implemented recursively with a depth-first, left-to-right traversal of the schema. The first
mismatch encountered determines the order of the items.

Two items with the same schema are compared according to the following rules.

nul | dataisawaysequal.

bool ean datais ordered with false before true.

i nt,long,fl oat anddoubl e datais ordered by ascending numeric value.

byt es andf i xed data are compared lexicographically by unsigned 8-bit values.

st ri ng datais compared |lexicographically by Unicode code point. Note that since
UTF-8 isused as the binary encoding for strings, sorting of bytes and string binary datais
identical.

e array dataiscompared lexicographically by element.

e enumdataisordered by the symbol's position in the enum schema. For example, an

enum whose symbolsare["z", "a"] wouldsort"z" valuesbefore™ a" values.
e uni on dataisfirst ordered by the branch within the union, and, within that, by the type
of the branch. For example,an["i nt", "string"] unionwould order al int values

before all string values, with the ints and strings themselves ordered as defined above.
« record dataisordered lexicographically by field. If afield specifiesthat its order is:

* "ascendi ng", then the order of its valuesis unaltered.

 "descendi ng", thentheorder of itsvaluesis reversed.

* "ignore",thenitsvauesareignored when sorting.

e map datamay not be compared. It isan error to attempt to compare data containing maps
unlessthose mapsareinan " or der " : "i gnor e" record field.
5. Object Container Files

Avro includes a simple object container file format. A file has a schema, and all objects
stored in the file must be written according to that schema, using binary encoding. Objects

Page 10

Avro 1.3.2 Specification

are stored in blocks that may be compressed. Syncronization markers are used between
blocks to permit efficient splitting of files for MapReduce processing.

Files may include arbitrary user-specified metadata.

A file consists of ;

» A file header, followed by
* oneor more file data blocks.

A file header consists of:

« Four bytes, ASCII 'O, 'b', ', followed by 1.

« file metadata, including the schema.

« The 16-byte, randomly-generated sync marker for thisfile.

File metadata consists of:

« A long indicating the number of metadata key/value pairs.
» For each pair, astring key and bytes value.

All metadata properties that start with "avro." are reserved. The following file metadata
properties are currently used:

« avro.schema contains the schema of objects stored in the file, as JISON data (required).

« avro.codec the name of the compression codec used to compress blocks, as a string.
Implementations are required to support the following codecs: "null" and "deflate". If
codec is absent, it is assumed to be "null". The codecs are described with more detail
below.

A file header is thus described by the following schema:

{"type": "record", "name": "org.apache.avro.file.Header",
"frelds" : [
{"nane": "magic", "type": {"type": "fixed", "nanme": "Mgic", "size":
4} },
{ n nanB'l : n n.et all , n t ypell : { n t ypell : n rTapll , n Val uesll : n byt esll }} ,

{ll nan,.ell. n SynC", lltypell: {lltypell: llfi XEd", n nan,.ell. "SynC", llsi Zell: 16}},
]
}

A file data block consists of:

« A long indicating the count of objectsin this block.

« Alongindicating the size in bytes of the serialized objects in the current block, after any
codec is applied

» Theserialized objects. If a codec is specified, thisis compressed by that codec.

Page 11

Avro 1.3.2 Specification

» Thefile's 16-byte sync marker.

Thus, each block's binary data can be efficiently extracted or skipped without deserializing
the contents. The combination of block size, object counts, and sync markers enable
detection of corrupt blocks and help ensure data integrity.

5.1. Required Codecs

5.1.1. null

The "null" codec simply passes through data uncompressed.

5.1.2. deflate

The "deflate" codec writes the data block using the deflate algorithm as specified in REC
1951, and typically implemented using the zlib library. Note that this format (unlike the "zlib
format" in RFC 1950) does not have a checksum.

6. Protocol Declaration
Avro protocols describe RPC interfaces. Like schemas, they are defined with JSON text.

A protocol isaJSON object with the following attributes:

protocol, a string, the name of the protocol (required);

namespace, an optional string that qualifies the name;

doc, an optional string describing this protocol;

types, an optional list of definitions of named types (records, enums, fixed and errors). An
error definition isjust like arecord definition except it uses "error" instead of "record"”.
Note that forward references to named types are not permitted.

» messages, an optional JSON object whose keys are message names and whose values are
objects whose attributes are described below. No two messages may have the same name.

The name and namespace qualification rules defined for schema objects apply to protocols as
well.

6.1. M essages

A message has attributes:

» adoc, an optional description of the message,
e arequest, alist of named, typed parameter schemas (this has the same form as the fields
of arecord declaration);

Page 12

http://www.isi.edu/in-notes/rfc1951.txt
http://www.isi.edu/in-notes/rfc1951.txt

Avro 1.3.2 Specification

e aresponse schema; and
« anoptiona union of error schemas.

A request parameter list is processed equivalently to an anonymous record. Since record field
lists may vary between reader and writer, request parameters may also differ between the
caller and responder, and such differences are resolved in the same manner as record field
differences.

6.2. Sample Protocol

For example, one may define asimple Helloworld protocol with:

7. Protocol Wire Format

7.1. Message Transport
Messages may be transmitted via different transport mechanisms.
To the transport, a message is an opague byte sequence.

A transport is a system that supports:

e transmission of request messages
« receipt of corresponding response messages

Page 13

Avro 1.3.2 Specification

Servers will send a response message back to the client corresponding to each request
message. The mechanism of that correspondance is transport-specific. For example, in
HTTP it might be implicit, since HTTP directly supports requests and responses. But a
transport that multiplexes many client threads over a single socket would need to tag
messages with unique identifiers.

7.1.1. HTTPas Transport

When HTTP is used as atransport, each Avro message exchangeisan HTTP
request/response pair. All messages of an Avro protocol should share asingle URL at an
HTTP server. Other protocols may also use that URL. Both normal and error Avro response
messages should use the 200 (OK) response code. The chunked encoding may be used for
requests and responses, but, regardless the Avro request and response are the entire content
of an HTTP request and response. The HTTP Content-Type of requests and responses should
be specified as "avro/binary". Requests should be made using the POST method.

7.2. Message Framing
Avro messages are framed as alist of buffers.

Framing is alayer between messages and the transport. It exists to optimize certain
operations.

The format of framed message dataiis:

« aseries of buffers, where each buffer consists of:
» afour-byte, big-endian buffer length, followed by
» that many bytes of buffer data.

« A messageis awaysterminated by a zero-lenghted buffer.

Framing is transparent to request and response message formats (described below). Any
message may be presented as a single or multiple buffers.

Framing can permit readers to more efficiently get different buffers from different sources
and for writersto more efficiently store different buffersto different destinations. In
particular, it can reduce the number of times large binary objects are copied. For example, if
an RPC parameter consists of a megabyte of file data, that data can be copied directly to a
socket from afile descriptor, and, on the other end, it could be written directly to afile
descriptor, never entering user space.

A simple, recommended, framing policy isfor writers to create a new segment whenever a
single binary object iswritten that is larger than anormal output buffer. Small objects are

Page 14

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Avro 1.3.2 Specification

then appended in buffers, while larger objects are written as their own buffers. When a reader
then tries to read a large object the runtime can hand it an entire buffer directly, without
having to copy it.

7.3. Handshake

RPC requests and responses are prefixed by handshakes. The purpose of the handshake is to
ensure that the client and the server have each other's protocol definition, so that the client
can correctly deserialize responses, and the server can correctly deserialize requests. Both
clients and servers should maintain a cache of recently seen protocols, so that, in most cases,
a handshake will be completed without extra round-trip network exchanges or the
transmission of full protocol text.

The handshake process uses the following record schemas:

« A client first prefixes each request with aHandshakeRequest containing just the
hash of its protocol and of the server's protocol (cl i ent Hash! =nul | ,
clientProtocol =null, serverHash! =nul |), wherethe hashes are 128-bit
MD5 hashes of the JSON protocol text. If a client has never connected to a given server,
it sends its hash as a guess of the server's hash, otherwise it sends the hash that it

Page 15

Avro 1.3.2 Specification

previously obtained from this server.

» The server responds with aHandshakeResponse containing one of:

« mat ch=BOTH, serverProtocol =null, serverHash=null if theclient
sent the valid hash of the server's protocol and the server knows what protocol
corresponds to the client's hash. In this case, the request is complete and the response
dataimmediately follows the HandshakeResponse.

« mat ch=CLI ENT, serverProtocol!=null, serverHash!=null if the
server has previously seen the client's protocol, but the client sent an incorrect hash of
the server's protocol. The request is complete and the response data immediately
follows the HandshakeResponse. The client must use the returned protocol to process
the response and should also cache that protocol and its hash for future interactions
with this server.

* mat ch=NONE if the server has not previously seen the client's protocol. The
server Hash andser ver Prot ocol may aso be non-null if the server's protocol
hash was incorrect.

In this case the client must then re-submit its request with its protocol text
(clientHash!=null, clientProtocol!=null, serverHash!=null)
and the server should respond with a successful match (mat ch=BOTH,

server Protocol =nul |, serverHash=nul |) asabove.

The net a field is reserved for future handshake enhancements.

7.4. Call Format

A call consists of arequest message paired with its resulting response or error message.
Requests and responses contain extensible metadata, and both kinds of messages are framed
as described above.

The format of acall request is:

« request metadata, a map with values of type byt es

« the message name, an Avro string, followed by

» the message parameters. Parameters are serialized according to the message's request
declaration.

The format of acall responseis:

» response metadata, a map with values of type byt es
« aone-byteerror flag boolean, followed by either:
» if theerror flag isfalse, the message response, serialized per the message's response
schema.
» if theerror flag istrue, the error, serialized per the message's error union schema.

Page 16

Avro 1.3.2 Specification

8. Schema Resolution

A reader of Avro data, whether from an RPC or afile, can always parse that data because its
schemais provided. But that schema may not be exactly the schema that was expected. For
example, if the data was written with a different version of the software than it is read, then
records may have had fields added or removed. This section specifies how such schema
differences should be resolved.

We call the schema used to write the data as the writer's schema, and the schema that the
application expects the reader's schema. Differences between these should be resolved as
follows:

e ltisanerror if the two schemas do not match.

To match, one of the following must hold:

both schemas are arrays whose item types match
both schemas are maps whose value types match
both schemas are enums whose names match

both schemas are fixed whose sizes and names match
both schemas are records with the same name

either schemaisaunion

both schemas have same primitive type

the writer's schema may be promoted to the reader's as follows:
» intispromotable to long, float, or double

» longispromotableto float or double

» float is promotable to double

« if both arerecords:

» the ordering of fields may be different: fields are matched by name.

» schemas for fields with the same name in both records are resolved recursively.

» if thewriter'srecord contains afield with a name not present in the reader's record,
the writer's value for that field isignored.

» if thereader's record schema has afield that contains a default value, and writer's
schema does not have a field with the same name, then the reader should use the
default value from itsfield.

» if the reader's record schema has a field with no default value, and writer's schema
does not have afield with the same name, an error is signalled.

e if both areenums:
if the writer's symbol is not present in the reader's enum, then an error is signalled.

Page 17

Avro 1.3.2 Specification

o if both arearrays:

This resolution algorithm is applied recursively to the reader's and writer's array item
schemas.

« if both are maps:
This resolution algorithm is applied recursively to the reader's and writer's value schemas.
« if both areunions:

The first schemain the reader's union that matches the selected writer's union schemais
recursively resolved againgt it. if none match, an error is signalled.

e freader'sisaunion, but writer'sisnot

The first schemain the reader's union that matches the writer's schemais recursively
resolved against it. If none match, an error is signalled.

e jfwriter'sisaunion, but reader'sisnot

If the reader's schema matches the selected writer's schema, it is recursively resolved
against it. If they do not match, an error is signalled.

A schema's "doc" fields are ignored for the purposes of schema resolution. Hence, the "doc"
portion of a schema may be dropped at serialization.

Page 18

	1 Introduction
	2 Schema Declaration
	2.1 Primitive Types
	2.2 Complex Types
	2.2.1 Records
	2.2.2 Enums
	2.2.3 Arrays
	2.2.4 Maps
	2.2.5 Unions
	2.2.6 Fixed

	2.3 Names

	3 Data Serialization
	3.1 Encodings
	3.2 Binary Encoding
	3.2.1 Primitive Types
	3.2.2 Complex Types
	3.2.2.1 Records
	3.2.2.2 Enums
	3.2.2.3 Arrays
	3.2.2.4 Maps
	3.2.2.5 Unions
	3.2.2.6 Fixed

	3.3 JSON Encoding

	4 Sort Order
	5 Object Container Files
	5.1 Required Codecs
	5.1.1 null
	5.1.2 deflate

	6 Protocol Declaration
	6.1 Messages
	6.2 Sample Protocol

	7 Protocol Wire Format
	7.1 Message Transport
	7.1.1 HTTP as Transport

	7.2 Message Framing
	7.3 Handshake
	7.4 Call Format

	8 Schema Resolution

